Characteristics of deterministic and stochastic sandpile models in a rotational sandpile model.
نویسندگان
چکیده
Rotational constraint representing a local external bias generally has a nontrivial effect on the critical behavior of lattice statistical models in equilibrium critical phenomena. In order to study the effect of rotational bias in an out-of-equilibrium situation like self-organized criticality, a two state "quasideterministic" rotational sandpile model is developed here imposing rotational constraint on the flow of sand grains. An extended set of critical exponents are estimated to characterize the avalanche properties at the nonequilibrium steady state of the model. The probability distribution functions are found to obey usual finite size scaling supported by negative time autocorrelation between the toppling waves. The model exhibits characteristics of both deterministic and stochastic sandpile models.
منابع مشابه
Symmetries and Universality Classes in Conservative Sandpile Models
The symmetry properties which determine the critical exponents and universality classes in conservative sandpile models are identified. This is done by introducing a set of models, including all possible combinations of abelian vs. non-abelian, deterministic vs. stochastic and isotropic vs. anisotropic toppling rules. The universality classes are determined by an extended set of critical expone...
متن کاملGeneralized Manna Sandpile Model with Height Restrictions
Sandpile models with conserved number of particles (also called fixed energy sandpiles) may undergo phase transitions between active and absorbing states. We generalize the Manna sandpile model with fixed number of particles, introducing a parameter −1≤ λ≤ 1 related to the toppling of particles from active sites to its first neighbors. In particular, we discuss a model with height restrictions,...
متن کاملSandpile Dynamics and Renormalization-group Approach
A successful renormalization-group (RG) approach may provide signinicant insights of a system exhibiting power-law dependencies. In 1994, a RG scheme [1] was proposed for sandpile models which exhibit power-law behavior and function as the models of self-organized criticality [2]. One momentous result of such a RG approach is that BakTang-Wisenfeld (BTW) [2] sandpile posepossing a deterministic...
متن کاملA deterministic sandpile automaton revisited
The Bak-Tang-Wiesenfeld (BTW) sandpile model is a cellular automaton which has been intensively studied during the last years as a paradigm for self-organized criticality. In this paper, we reconsider a deterministic version of the BTW model introduced by Wiesenfeld, Theiler and McNamara, where sand grains are added always to one fixed site on the square lattice. Using the Abelian sandpile form...
متن کاملCritical exponents in stochastic sandpile models
We present large scale simulations of a stochastic sandpile model in two dimensions. We use moments analysis to evaluate critical exponents and finite size scaling method to consistently test the obtained results. The general picture resulting from our analysis allows us to characterize the large scale behavior of the present model with great accuracy. Sandpile automata [1] are prototypical mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 75 4 Pt 1 شماره
صفحات -
تاریخ انتشار 2007